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ABSTRACT 

This paper first considers a general mapping w of points z in RN into points 

w(z) in the same space.  It is shown that classical mathematical programming 

problems can all be restated as finding among those vectors z ^ 0 which map 

into w ^ 0 , one which minimizes zTw . For a differentiable mapping v with 

a positive semi-definite Jacobian matrix the obviously sufficient ("complementary 

slackness") condition z w =, 0 for a minimum is shown to be necessary. 

Next considered is the case which includes quadratic and linear programming: 

w - Mz + q where q is a fixed vector and M is positive (semi-) definite 

with constant coefficients.  It is noted that the definiteness property is pre- 

served for any equivalent system generated by an interchange of a subset of 

corresponding complements of z and w or what is the same thing by a "block" 

pivot on a principal minor of M .  Since this result is related to recent ones 

obtained by A. Tucker and P. Wolfe, it is planned to incorporate its proof in 

a separate joint paper. 

Finally, a simple constructive solution of quadratic and linear programs is 

presented.  In a sense the simplex method for linear programs and the results 

of Barankin, Dorfman, Wolfe, Beale, and Markowitz on quadratic programs re- 

appear here but are curiously free of primal-dual structure.  Complementary pairs 

of variables play a key role. 



POSITIVE (SEMI-) DEFINITE MATRICES MD MATHEMATICAL PROGRAMMING 

i—The  Optlmallty Criterion and Its Application 

Let w(z) » (w1(2),...,wN(z))
T be ^ „Ktriry vector function mapping 

R  Into Itself.  Given the mathematical program 

T 
Minimize   z w(z) 

'1^ subject to   w(z) S 0 

z ^_ 0 

an obviously sufficient condition for the optlmallty of a feasible vector z0 

is 

(2) oT , o\ ^^ z w(z ) ■ 0 

which implies that for each J = 1,...,N , at most one of z° and Wj(z
0) ^y 

be positive. Under certain circumstances, (2) is also a necessary condition of 

the optlmallty of z0 in (i). For Instance, assume that w(z) is a differen- 

tlable mapping. Denote by [dw/ftz] the transposed Jacobian matrix, 

tdWj/ö^] . (For this notation and terminology, see [1].) it will furthemore 

be assumed that the Kuhn-Tucker constraint qualification [8] is satisfied by 

the set 

{z | w(z) ^.0 , z ^ 0) 

Let [te/dzf    denote [bv/bz]    with each of Its entries evaluated at z0 . 

THE0REM1: If ^W0    i- Positive semi-definite, and if z0 is optimal 

for (1), then zoTw(z0) . 0 . 

PROOF: The hypothesis that z0 is optimal for (l) implies [8, Theorem 1] 



that there exists an N-vector    ^    such that 

w(z0)  + [dw/öz]
0(z0 - 7v)    ^ o 

20V(z0)  + [dw/äzj0(z0 - X)l - o 

>v w(z )  = 0 

Utilize these facts, the feasibility of z0 , and the positive semi- 

deflniteness of [bw/bzf  , we obtain 

0 ^ z0Tw(z0) = z^t^zj^, . z°) ( (ao . ^T[dw/Qz]o(, . ^ ^ 0 

Thus, equality holds throughout and the proof is complete. 

We make no claim that these are the weakest conditions* under which the 

theorem is true; nevertheless, they are easily stated.  Under the hypotheses 

set forth^above. Equation (2) becomes an optlmality criterion for a feasible 

vector z0 in the program (l). 

Some of the familiar statements of duality in linear and nonlinear 

programming, see [j] and [6] , can be derived from twice continuously dif- 

ferentiable functions K(x,y) which are strictly convex in x^O and 

strictly concave in y ^ o .  (The strictness can be dropped when the function 

K(x,y) is of the quadratic type (5) shown below.) Indeed, associated with 

K(x,y) is a pair of dual programs, see [5]. 

o* j^Tap^s i^fz-r^unT ~tri*'the -"" =" * 



- 
PRIMAL 

Minimize 

subject to ÖK^y] <. o 

x ^_ 0 

y ^ 0 

DUAL 

Maximize 

subject to 

K - xx[aK/äx] 

B^x] ^ 0 

x ^ 0 

y ^.o 

Let 

(3) 
u(x,y) = [dK/öx] ^.0 ,  v(x,y) = -[ÖK/Öy] ^0 

z - (x,y) , w(z) = (u(x,y) , v(x,y))  . 

We seek a z0 ^ 0 such that w(z0) ^ o and z0Tw(z0) = 0 , for such a z0 

is feasible in both the primal and the dual and makes their objective functions 

equal.  This condition is also necessary as may be derived from the duality 

theorem [5] and also by considering the program: 

Minimize  xT[äK/ax] - yT[äK/äy] 

" [dK/äx] ^ 0 

-[äK/äy] ^ 0 

x ^_ 0 

y ^0 

which clearly has the form (l) under the identifications (3).  Theorem 1 

applies in the present case since 

00 
subject to 

[dw/äz 

ö2K/äx2    -^K/ay^x' 

6 K/oxdy   -bK/dy' 

and for all  (n + m)-vectors X 



yfx/bxdy        -apK/äy2^     I   o      -d2K/äy2 

because [A/bx2]  and -[d2K/äy2] are positive semi-definite due to the 

convexity and concavity properties of K(x,y) , respectively. 

As an example of the above, if g^x) , 0 ^ i ^ m , are convex functions 

of x e R , the convex program 

Minimize   g (x) 

subject to giCx) ^ 0       (1 £ i £ m) 

x ^_ 0 

m 
can be derived from K(x,y) = g (x) + z    y g (x) .  Another example is 

0    i=l ^^ 1 
provided by a function of the form 

(5) K(x,y) = (i xTDx + c
Tx) - (i yTlgy + b

T
y) . ^ 

where D and E are symmetric positive semi-definite matrices,  c and b 

are constant vectors, and A is an arbitrary matrix.  Symmetric dual quadratic 

programs result from the formulation suggested above.  See [2] . A program 

of the type (l) can be obtained by forming the combined (self-dual) problem: 

Minimize   x Dx + y Ey + ex + bTy 

T 
subject to Dx-Ay + c^O 

(6) 
Ax  +    Ey + b ^_ 0 

x ^ 0 

y ^.o 

With u - Dx - ATy + c , v = Ax + Ey + b , v = (u,v)  and . . (x,y) , a solution 



z is sought such that z ^ 0 , w ^ 0 , and zTw = 0 .  Such a vector solves 

the program (6) as well as both of the programs out of which it was formed. 

We shall now study properties of complementary basic solutions of the 

linear system 

(7) Iw - Mz » q 

where w = (w^...^)  and z - (a^...^)1 are real variable vectors, 
m 

1 ■ (<!■,_>.••,%)  is known, and M is any N x N matrix of coefficients which 

is either positive semi-definite or positive definite, as specified, but not 

necessarily symmetric.  If the pair (w,z) ^0 satisfies (7) and the equation 
T 

z w = 0 , then z is optimal for the quadratic program 

rn        m 

Minimize   z Mz + q z 

(°' subject to   Mz + q ;> 0 

z ^.0 

Observe that (6) may be cast In this form by setting q = (c,ti) and 

(9) M = 

In the sum on the right, the first summand Is positive semi-definite and the 

second is skew symmetric. Therefore M Is positive semi-definite.  For the 

special case of linear programs,  D = 0 and E = 0 , thus zTMz = 0 for all 

N-vectors z . 

II.  Canonical Equivalents 

DEFDimON 1:  Variable pairs  (w^^) will be called complementary; w and B will 

be called  complements of each other. A pair (w,z) of N-vectors is a 



complementary solution of (7) provided 

^1-0' z-iwn=0  ,  zw„=0    7u -n 1 1     '   2 2  u> • • • > ZNWN " 0 • 

DEFINITION 2:  A basic set of variables consists of any ordered set of N 

variables ^ and z.    such that their coefficient matrix In (7), called a 

basis. Is nonslngular. 

DEFINITION 5: A complementary basic set of variables is one in which exactly 

one variable of each complementary pair (w^) is basic.  (For example, 

w is a complementary basic set. If M is a singular matrix, then z    can- 

not be basic, although it is complementary. On the other hand  M = ( 0 ^ 
'     v-l 0' 

is positive semi-definite and z = (z^z^f    is basic.) 

DEFINITION k:    A basic solution is the one found by solving for the values of 

a given set of basic variables when the nonbasic variables are set equal to 

zero.  (For complementary basic sets, basic solutions are complementary solutions.) 

DEFINITION 5:  The canonical equivalent of (7) with respect to a basic set of 

variables having basis B is the system obtained by multiplying through (7) 

on the left by B-1 .  We observe that if the basic set of variables is 

complementary and is redesignated w and the nonbasic ones denoted by I then 

this left multiplication results in a new canonical fom w = M T + q . 

We observe that (7) itself is in canonical fom with respect to the 

complementary basic set w and that M , the negative of the coefficient 

matrix of the corresponding nonbasic variables, is at least positive semi- 

definite.  William P. Drews conjectured that the same may be true for M the 

analogue of M appearing in each canonical equivalent of (7) with respect to 

a complementary basic set of variables. This turned out to be true. 



Independently P. Wolfe established the same result for M of form (9) and 

A. C^er also established it for any M all of whose principal minors are 

positive. 

THEOREM 2: GiVen any canonical equivalent of (7) with respect to a comple- 

mentary basic set, let M be the negative of the transformed coefficient 

matrix of the complementary set of nonbasic variables; then M and M are 

either both positive definite or both positive semi-definite, or both have 

principal minors with both positive or both non-negative, or both none of 

these. 

PROOF: The proof will be omitted here and will be contained in a separate 

joint paper with A. Tucker and P. Wolfe, 

III.  Existence of a CompT ementary Non-Ne^t.'^ Solution: A Constructive Prnnf 

W.S. Dorn [5] has shown that for a positive definite, but not necessarily 

s»ric, matrix M there always exists a non-negative complementary solution 

of (7). ^That is, there exists a w0 ^ 0 and a z0 ^ 0 such that Iw^Mz0 = <, 

and z°w° =0 for all i .  One of the authors [2] extends this result to the 

positive semi-definite case under the assumption that a non-negative solution 

to (7) exists.  Our present objective is to prove these assertions constructively 

for matrices with all positive principal minors (and hence Dorn's result as a 

special case). 

THEOREM 5:  Given any complementary basic set of variables w of system (7) 

expressed in terms of nonbasic variables w = M I + ^ , then M has a positive 

or non-negative diagonal according as M has all principal minors positive or 

non-negative (or, as a special case,  M Is positive or positive semi-definite). 



PROOF: Let w be any complementary basic set of variables selected out of 

Cw,z) and let z be the complementary nonbasic variables. Rewriting (7) in 

canonical form relative to w yields v = M 7 + q ; let M have all positive 

(non-negative) principal minors, then by Theorem 2 the same is true for M 

and hence M-fa^j has all the entries a^ on the diagonal positive (non- 

negative). 

COROLLARY: Given 7 = M 7 + q , each component 7 of w is a strictly in- 

creasing or nondecreasing function of 7 according as M has all principal 

minors positive or non-negative. 

A complementary basic solution will be said to be out-of-kilter if one or 

more of its basic variables is negative.  By the Corollary, if a  > 0 and 
    _ ss 
ws = %    ls  negative, increasing 7g    from its current value of zero will cause 

~        ro ̂>0 In ws    to increase linearly toward zero.     Suppose    w    = 0    at 
s 

this case, 7  can replace 7  in the basic set, and its value in the new 

basic solution will be 7J > 0 .  If, during the increase of 7 , no other basic 
s 

variable becomes negative, the resulting basic solution is still complementary 

and is "less out-of-kilter." However, if some other variable, say 7 , goes 

negative, we will say that the Increase of 7  is blocked by 7 . We shall 
S j" 

show that the Increase of 7s will be unblocked by replacing wr in the basic 

set by its complement 7 . 
r 

THEOREM k:     If Increasing the value of a nonbasic variable 7  causes a 
s 

basic variable w  to decrease, and if 7  can replace 7  m the basic 
r r 

set, then, after replacement, 7  will Increase with Increasing 7 . For M 
s 

with all positive principle minors (which Includes the case of M positive 

definite1) z  can always replace w 
r -r 

-8- 



PHOOF: Let M = [a^] . We are assuming a^ < 0 and a^ ^ o , where 

arr > 0 if M has all positive minors, (Theorem 3). To obtain a new canonical 

equivalent after replacing, w  by F , we reduce the coefficient of T  to 

a unit column by pivoting on the term -arrzr in the canonical system ' 

Iw - M z = q ; this results in a transformed matrix M* = [a* ]  In which 

arr = 1/arr > 0 and a
rs " -

a
rs/

a
rr > 0 .  It is the fact that a* > 0 which 

implies that zr    will increase with increasing z 

DEFINITION 6: A basic solution is said to be degenerate if one or more of its 

basic variables is zero. 

A standard device (in linear programming) which pemits one to proceed 

as if all basic solutions were nondegenerate is to replace the vector q by 

a matrix [q,l] . The components of w and z then become vectors which are 

considered to be lexico-positive (lexlco-negativel if their first nonzero 

component (providing such exists) is positive (negative). Otherwise they are 

zero vectors. 

THEOREM 5 (Dantzig, Orden and Wolfe): All basic solutions of (7) are non- 

degenerate in the lexicographic sense. 

PROOF: The proof given in [k]    is based on the observation that the vector 

values of any set of basic variables with basis B are given by the rows of 

B [q,I] = [B q^B ] and each row of B-1 has at least one nonzero 

component. 

In the discussions which follow, all ordering relations on the values of 

basic variables should be interpreted in the lexicographic sense. 

THEOREM 6: If one nonbasic variable 7, is allowed to take on any vector 

value and if the other nonbasic variables take on any fixed values in their 



first component and zero in the rest, then at most one basic variable can be 

a zero vector, 

PROOF: Set the nonbasic variables other than 7 at their fixed values and 

let zs be the zero vector. Then the values of the basic variables are non- 

zero by the same argument as In Theorem 5.  If some basic variable w  Is to 

vanish for some other vector value of z" • say z" = z0 , then It must be 
  s '      s   s 

possible to Interchange ^ and zs as basic variables. But the new basic 

solution (which is the same as the prior one obtained by setting z" = z0 ) Is 
s   s . 

nondegenerate, so that no other basic variable can have a zero-vector value. 

We are now prepared to deal with 

THEOREM 7: If M has all principal minors positive, there exists a non- 

negative complementary solution to (7), i.e., to Iw - Mz = q . 

Our proof will be constructive.  First we introduce some notation: 

i) let  (w ,z ) = (q,0) be any complementary basic solution to (7); 

11) let (w ,z ) be the solution to (7) such that fc* = (o,. .,0,^,0,. .,0) 

ITERATIVE PROCEDURE: 

Step 0   Set  (w,z) = (w^z0)  and  (w,z) - (q,0) as the starting solution. 

Step la  If (w ,z ) ^0 , terminate; the solution satisfies the theorem. 

Step lb  If not, let zs    be any i"  such that w? ^. 0 .  Let t = 0 . 

Step 2   Set ^+1 = Max ^ ^ i^ such that ^t+1 ^ 0 and wt+1 ^ 0 If 

Step 5   If wr  = 0 , (i.e., the lexicographic vector w  vanishes) replace 

w^ by z  in the basic set. 

Step 14a  If r = s , return to Step la. 

-10- 



Step lib      If r / s , return to Step 2 with t + 1 replacing t . 

■^t  —   —t+l 
PROOF: In the Interval z < z„ < z   , no variable can change sign and become s   s   s 

negative (by the definition of z +  in Step 2.) Hence v  the number of basic 
s 

variables with negative values, stays the same or decreases if a negative vari- 

able becomes nci-negative.  The latter is. always the case if r = s in Step ka., 

because w  (originally negative) ha,s been increased to zero value.  Therefore 

there can be only a finite number of returns to Step la before all the variables 

are non-negative.  Consider now returns to Step 2.  Initially there is a 

(lexico-) positive increase of z  in an interval 0 £_ z ^ z  because of the 

nondegeneracy of the basic solution.  If r / s , and w > 0 for z  and 

w   = 0 > then a  < 0 and the replacement of w  by z  permits z  to 

be increased by Theorem k-  and Theorem 6. There can be only a finite number of 

returns to Step 2 with the same basic set until the largest z  is attained 
'   .    ■ ■        " s 

for which w < 0 and v is minimum.  Since the number of different basic 
■ s ■ . 

sets is finite, the proof is complete. 

The Case for M Positive Semi-Definite 

THEOREM 8:  If increasing the value of a nonbasic variable z  causes a basic 

variable w  to decrease, and if z  cannot replace w  in the basic set, then 
,      r. '     ,  r r ' 

(z ,z ) can always replace (w ,w ) as basic variables; moreover, increasing 

w  will increase z s r 

PROOF:  If M is positive semi-definite, it may happen that a  =0 and 

consequently that it is impossible to replace w  by z .  In this case,  the 

2x2 submatrix 

(11) M2 

a     a 
ss    sr 

a     a rs    rr 

-11- 



has entries satisfying the conditions 

(12) %s ^ 0 , arr = 0 , asr + ars = 0 , and asr > 0  . 

The third of these,  asr + ars = 0 , follows from the fact that 

7^ MX - assXL + (asr + ^JW    must be positive semi-definite (which In turn is 

true because M Is positive semi-definite). The positlvlty of a   is a con- 
sr 

sequence of the assumption that wj. decreases as z      increases. Since the 

submatrlx ^ Is nonsingular, tue replacement is possible [9] . Finally  7 
. _ •"  r 
(now in the basis) Increases with increasing w  (now outside the basis) 

because a  > 0 . 
sr 

THEOREM 9: No non-negative solution exists if, for some s  all a  > 0 
_ '     is *•  * 

a
ss = 

0 , and %< 0 • 

PROOF: As in the proof of Theorem 8, if a  =0 then a  = -a  < 0   There- 
ss si    is * 

fore equation s consists of all nonpositive coefficients and a negative 

constant term, and hence is not solvable In non-negative variables. 

In developing an analogue of the positive definite case, we note that if 

the conditions of Theorem 9 hold, 7  can be increased indefinitely without 

making' any ^ change sign and become negative.  In the example (15) below, 

q^^ < 0 and s^ can be Increased as much as desired without Inducing any sign 

changes in the basic variables. Letting z - -H» we have w = -1 , w = 1 , 

w5 = 1 + z1 -> +00 , and w^ - -1 - zi -» -oe .  This problem is, however, solvable. 

(13) 

wl W2 W5 vk zl Z2 s \ «1 

1 0 0 0 0 0 1 -1 -1 
0 1 0 0 0 0 1 1 1 
0 0 1 0 -1 -1 0 0 1 
0 0 0 1 1 -1 0 0 -1 

-12- 



The device we have used to prevent the values of basic variables from 

tending to -«> is to impose a uniform negative lower limit | for variables 

with negative values.  (A nonuniform lower limit will do as well.) Once a 

variable rises into the non-negative range, its admissible lower limit is 

changed back to zero.  If we start with the complementary basic solution 

(w,z) = (g,0) , we may set i = Min c^ .  (if Min ^ ^ 0 , then (q,0) solves 

the problem.) Since z^^ = 0 initially,  z^^ ^ 0 will hold in all subsequent 

iterations. From these considerations, it follows that at most one variable of 

each complementary pair can ever be negative. If a basic variable w  (with 

negative value) decreases to i    when z      is increased, w  is to be reuLaceä 
s r 

in the basic set; it becomes a nonbaslc variable with value w = i . 
r 

We shall modify the notations of Theorem 7 to treat the positive semi- 

definite case. 

(i1) Define  (w ,zD) to be any solution of (7) such that z? = 0 or 

I  , where z? = i implies w? ^. 0 . 

(ii') Define  (w ,tc)    to be the solution to (7) such that 

(0,...,0,^ 
-D 
Z Z ,0,.,a,0)  for some z" s s 

MODIFIED ITERATIVE PROCEDURE: 

Step 0'   Set  (w,z) = (w^z0)  and  (w, z).= (q,0) as the starting solution. 

Step la'  If  (w3,?3) ^_0 , terminate.  The solution satisfies the theorem. 

Step lb'  Let  z"  be any 7  such that w? < 0 or z? = ü ; let t = 0 . 
s 1 i i 

Step 2a,  Set  z*"*"1 = Max z" > I*  such that  ((w*"*-1 < 0 if v0 s 0    or 
s        s'-s s^       s 

-t+1 z 
3 10 if ?; < 0)  and  (^+1^0 if W*^0)). 

Step 2b1  If zs  = +00^ terminate. No feasible solution exists. 

—t+l 
Step 2c'  If z   = 0 , return to Step la", 

s 

Step 5a1  If w = 0 or i . and a  / 0 . replace w 
r '      xr '       '       * r 

set. 

by z  in the basic 
r 

-13- 



Step 5b'  If vr = 0 or i , and arr = 0 , replace  (7,7) by (F ,7,) in 

the basic set. 

Step ka'    If r = s , return to Step la'. 

Step 4b'  If r ^ s , return to Step 2a' with t + 1 replacing t . 

THEOBEM 10: If T  i„ the basic set increases with increasing I     outside the 
s 

basic set, then the sane class of solutions is generated by putting 7     in the 
  s 

basic set in place of z      and increasing z 
r r ' 

PROOF: There is only one degree of freedom and the relations are linear. 

Paraphase Summary of the Algorithm 

We may thus simplify the foregoing procedure into saying in effect: 

(0) Increase 7  until some 7   drops to 0  (or £),   replace 7   by T 
1 T, B   ' 

(1) increase ^ until some 7  drops to 0 (or i), replace 7   by I    , 
2 r2      ri 

(k) increase z     until some wr  drops to 0 (or i), replace 

w   by z 

(k+1) increase zr  until w  increases to 0 , replace 7  by z    where 
k     _ S      rk ' 

we denote by w.  any variable in the current basic set - although 

it may be the same as some 7±    which was earlier not in the basic 

set. 

From these discussions, the following observations can be made: 

THEOREM 11 (Cottle [S] )s  If  Iw - Mz = q is solvable In non-negative variables 

where M Is positive semi-definite, there exists a non-negative complementary 

solution. 

NOTE:  The positive definite case was shown by Dorn [5]. 

-Ik- 



THEOREM 12:    Iw - Mz = q is not solvable in non-negative variables if and only 

if the representation of some column s in terms of some complementary basis 

has nonpositive weights with zero weight on the complementary column whereas 

the representation for q has a negative weight for this column. 

-15- 
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